Учредитель: Северный (Арктический) федеральный университет им. М.В. Ломоносова

Адрес редакции: 163002, Архангельская обл., г. Архангельск, наб. Северной Двины, д. 17, каб. 1410а

Тел: (818-2) 21-61-00(15-33)
e-mail: l.zhgileva@narfu.ru
Сайт: http://aer.narfu.ru/

16+

О журнале

Вычисление потока тепла в задаче о течении Куэтта с использованием зеркально-диффузной модели граничного условия на стенках канала. С. 80–85.

Версия для печати

Рубрика: Физика, Математика, Информатика

УДК

533.72

Сведения об авторах

Лукашев Вячеслав Валерьевич, аспирант кафедры математики Института математики и компьютерных наук Северного (Арктического) федерального университета имени М.В. Ломоносова. Автор 5 научных публикаций

Попов Василий Николаевич, доктор физико-математических наук, доцент, заведующий кафедрой математики Института математики и компьютерных наук Северного (Арктического) федерального университета имени М.В. Ломоносова. Автор 126 научных публикаций, в т. ч. двух монографий, 6 учебных пособий

Юшканов Александр Алексеевич
, доктор физико-математических наук, профессор кафедры теоретической физики Московского государственного областного университета Автор 294 научных публикаций, в т. ч. 6 монографий

Аннотация

В рамках кинетического подхода вычислен поток тепла в задаче о течении Куэтта. В качестве основного уравнения используется БГК (Бхатнагар, Гросс, Крук) модель кинетического уравнения Больцмана, а в качестве граничного условия на стенках канала – модель зеркально-диффузного отражения. Для произвольных значений толщины канала и коэффициента аккомодации тангенциального импульса молекул газа стенками канала вычислен поток тепла, приходящийся на единицу ширины канала. Проведено сравнение с аналогичными результатами, полученными другими авторами.

Ключевые слова

кинетическое уравнение Больцмана, модельные кинетические уравнения, точные аналитические решения, модели граничных условий.

Запрос на полную версию статьи можно отправить через библиотеку университета

Список литературы

  1. Клосс Ю.Ю., Черемисин Ф.Г., Шувалов П.В. Решение уравнения Больцмана на графических процессорах // Вычислительные методы и программирование. 2010. Т. 11. С. 144–152.
  2. Unified Solutions to Classical Flow Problems Based on the BGK Model / L.B. Barihcello, M. Camargo, P. Podrigues, C.E. Siewert // ZAMP. 2001. Vol. 52. P. 517–534.
  3. Siewert C.E. Poiseuille, Thermal Creep and Couette Flow: Results Based on the CES Model Linearized Boltzmann Equation // European J. of Mechanics B/Fluids. 2002. Vol. 21. P. 579–597.
  4. Siewert C.E. The Linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems // Zeitschrift fur Angewandte Mathematic und Physik. 2003. Vol. 54. P. 273–303.
  5. Garcia R.D.M., Siewert C.E. The Linearized Boltzmann Equation with Cercignani-Lampis Boundary Conditions: Basic Flow Problems in a Plane Channel // European J. of Mechanics B/Fluids. 2009. Vol. 28. P. 387–396.
  6. Латышев А.В., Юшканов А.А. Влияние свойств поверхности на характеристики газа между пластинами в задаче Куэтта. Почти зеркальные условия // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 1999. № 10. С. 35–41.
  7. Попов В.Н., Тестова И.В., Юшканов А.А. Аналитическое решение задачи о течении Куэтта в плоском канале с бесконечными параллельными стенками // ЖТФ. 2011. Т. 81, № 1. С. 53–58.
  8. Черчиньяни К. Математические методы в кинетической теории газов. М., 1973.
  9. Латышев А.В., Юшканов А.А. Задача Смолуховского в металле с зеркально-диффузными граничными условиями // ТМФ. 2009. Т. 161:1. С. 95–108.