Address: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_est@narfu.ru
http://aer.narfu.ru/en/

ABOUT

Frequency Dependence of Relaxation Rate in Debye Dispersion Models of Electrophysical Properties. P. 121–129

Версия для печати

Section: Physics. Mathematics. Informatics

UDC

537.311

Authors

Koposov Gennadiy Dmitrievich
Institute of Natural Sciences and Technology, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: fc.genphys@pomorsu.ru
Volkov Aleksandr Sergeevich
Institute of Natural Sciences and Technology, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: a.s.volkov@narfu.ru
Tyagunin Anatoliy Vyacheslavovich
Institute of Natural Sciences and Technology, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: alastor15@yandex.ru

Abstract

A new model to explain the observed deviations of frequency dependencies from the Debye formulas for the relaxational polarization and hopping conductivity is proposed. The essence of the model is based on the acceptance of Debye formulas for permittivity and conductivity and dependence of relaxation rate on electric field frequency. On the basis of the model as an example, the analysis of electrophysical properties of frozen, moisture-containing dispersing medium based on quartz powder with fructose admixture is given. Research of electrophysical properties were carried out with the help of LCR meter E7-20 in the frequency range from 25 Hz to 1 MHz, the range of temperatures was 120- 270 K, the range of concentrations of fructose admixtures was from 10–6M to 10–2M. The frequency dependences of electrolytic conductivity, described by exponential function of a type σ(ω) ~ ωα are constructed. Frequency dependences of relaxation rates of conductivity and permittivity have the following form: τ ~ τ0w−β . Parameters of exponential functions depend on the sample temperature and admixture concentration. Relaxation rate, in accordance with the principle of independence of relaxational processes, includes relaxation rate at phonon scattering mechanism and relaxation rate due to scattering by static defects. As follows from the research, frequency of external electric field influences on a scattering mechanism and consequently on the value of relaxation rate. At introduction admixture into the ice structure the determination of relaxation rate at static defects is with difficulty. It depends on disfunction of scattering mechanism, since the impurity molecule penetrating into a crystal ice structure, delays the movement of carriers.

Keywords

doped ice, electrical conductance, permittivity, relaxation rate, disperse systems
Download (pdf, 3.8MB )

References

  1. Gonscher A.K. А New Understanding of the Dielectric Relaxation of Solids. J. Mater. Science, 1981, no. 16, pp. 2037–2060.
  2. Novik V.K., Gavrilova N.D., Vorobyov A.V., Lotonov A.M. Linejnaja dijelektricheskaja dispersija kak obshhee javlenie dlja tverdotel’nyh dijelektrikov. Nemarkovskaja relaksacija [Linear Dielectric Dispersion as a General Phenomenon for Solid Dielectrics. Non-Markovian Relaxation]. Fizika dijelektrikov (Dijelektriki-2014): materialy XIII Mezhdunar. konf. Sankt-Peterburg, 2–6 ijunja 2014 [Dielectric Physics (Dielectrics-2014): Proc. XIII Intern. Conf., St. Petersburg, 2–6 June, 2014]. Saint Petersburg, 2014, vol. 1, pp. 99–102.
  3. Poplavko Yu.M. Fizika dijelektrikov [Dielectric Physics]. Kiev, 1980.
  4. Bryskin V.V., Dyakov M.D., Muzhdba V.I., Hanin S.D. Analiz haraktera pryzhkovoj provodimosti po chastichnoj zavisimosti tangensa ugla [Analysis of the Hopping Conductivity on the Partial Dependence of Tangent of Angle]. Fizika tverdogo tela, 1981, vol. 23, no. 5, pp. 1516–1518.
  5. Ishchenko A.A., Fetisov G.V., Aslant A.A. Nanokremnij: svojstva, poluchenie, primenenie, metody issledovanija i kontrol’ [Nanokremny: Properties, Derivatization, Application, Methods of Research and Control]. Moscow, 2012.
  6. Tonkonogov M.P. Dijelektricheskaja spektroskopija kristallov s vodorodnymi svjazjami. Protonnaja relaksacija [Dielectric Spectroscopy of Hydrogen-Bonded Crystals. Proton Relaxation]. UFN, 1998, vol. 168, no. 1, pp. 29–54.
  7. Maeno N. Nauka o l’de [Science of Ice]. Moscow, 1988.
  8. Petrenko V.F., Whitworth R.W. Physics of Ice. New York, 2006.
  9. Frolov A.D. Jelektricheskie i uprugie svojstva merzlyh porod i l’dov [Electrical and Elastic Properties of Permafrost and Ice]. Pushchino, 1988.
  10. Andreev E.V., Bogatin A.S., Kovrigina S.A., Ignatova Yu.A., Bogatina V.N. Metod jekstrapoljacii dlja opredelenija vida raspredelenija relaksatorov v dijelektrikah [Extrapolation Method for Determining the Distribution Type of Relaxation Oscillators in Dielectrics]. Fizika dijelektrikov (Dijelektriki-2014): materialy XIII Mezhdunar. konf. Sankt-Peterburg, 2–6 ijunja 2014 [Dielectric Physics (Dielectrics-2014): Proc. XIII Intern. Conf., St. Petersburg, 2-6 June, 2014]. Saint Petersburg, 2014, vol. 1, pp. 33–36.
  11. Gavrilova N.D., Davydova A.A. Jelektroprovodnost’, dijelektricheskaja pronicaemost’ i jelektricheskij modul’ kristallogidratov formiata jerbija na chastotah 0,07 Gc – 1 MGc [Conductance, Dielectric Permittivity and Electrical Module of Erbium Formiate Crystalline Hydrates at Frequencies of 0.07 Hz - 1 Mhz]. Vestnik MGU. Ser. 3: Fizika, astronomiya, 2013, vol. 12, pp. 50–55.
  12. Schreder T.B., Dyre J.C. Computer Simulations of the Random Barrier Model. Physical Chemistry, Chemical Physics, 2002, no. 4 (14), pp. 3173–3178.
  13. Schreder T.B., Dyre J.C. Ac Hopping Conduction at Extreme Disorder Takes Place on the Percolating Cluster Phys. Physical review letters, 2008, no. 101 (1), pp. 2590–2591.
  14. Kononov N.N., Dorofeev S.G., Ishchenko A.A., Mironov R.A., Plotnichenko V.G., Dianov E.M. Dijelektricheskie i transportnye svojstva tonkih plenok, osazhdennyh iz zolej, soderzhashhih nanochasticy kremnija [Dielectric and Transport Properties of Thin Films Evaporated from Sols Containing Silica Nanoparticles]. Fizika i tehnika poluprovodnikov, 2011, vol. 45, no. 8, pp. 1068–1078.
  15. Tyagunin A.V., Koposov G.D. Vlijanie sostojanija l’da na vremja relaksacii dijelektricheskoj pronicaemosti [Influence of Ice Conditions on the Relaxation Rate of Permittivity]. Fizicheskiy vestnik instituta estestvennyh nauk i biomeditsiny SAFU, 2011, no. 10, pp. 49–55.