Address: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21


Modelling of Distribution Area and Analysis of Factors Contribution in Climatic Niche of Parnassius mnemosyne L. 1758 (Lepidoptera: Papilionidae). P. 56–67

Версия для печати

Section: Biology




Bolotov Ivan Nikolaevich
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences (Arkhangelsk, Russia)
Frolov Artem Andreevich
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences (Arkhangelsk, Russia)


The paper by the geoinformation method clarifies the boundaries of distribution range and locations of a red-listed butterfly Clouded Apollo (Parnassius mnemosyne Linnaeus 1758). The territorial suitability of the area for the species habitation with respect to the climatic variables is determined. According to the data from 3130 observation sites and captures obtained from the Russian Museum of the Biodiversity Hotspots of the Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences, literature data, GBIF base and 19 bioclimatic variables from WorldClim base the multidimensional analysis of climatic niche by maximum entropy method was carried out as well as the factors affecting the present Clouded Apollo distribution are clarified. The main climatic affecting factors of P. mnemosyne distribution at the species area territory are the next: the annual precipitation (positive dependence, the contribution of this variable is 50.7 %), minimum temperature of the coldest month (negative dependence, the contribution of this variable is 19.7 %), average yearly temperature (positive dependence, the contribution of this variable is 12.5 %). All of the observed climatic factors can affect on the distribution area both directly and through the food reserve - different plants of genus Corydalis DC, 1805, essential for a Clouded Apollo oligotroph lepidopterous larva. We conducted the forecasting of distribution range change through the middle and the second part of the 21st century using different climate change scenarios. According to the prognoses the territory of suitable habitat and climatic optima can be shifted into the northeastern direction. The probable distribution areas may increase in the central and northwestern territories of Russia and some declining may occur in the present climatic optima at the Central and Southern Europe.


Parnassius mnemosyne, geoinformation systems, maximum entropy method, butterflies, suitable habitat
Download (pdf, 6.2MB )


  1. Goldmann J. Der Fang von Parnassius mnemosyne verboten! Int. Entomologische Zeitschrift, 1911, no. 5, 234 p.
  2. Tatarinov A.G., Dolgin M.M. Fauna evropeyskogo Severo-Vostoka Rossii. Bulavousye cheshuekrylye [Fauna of the European North-East of Russia. Rhopalocera Lepidopterans]. Saint Petersburg, 1999. Vol. 7, part. 1.
  3. Polumordvinov O.A., Shibaev S.V. Materialy k rasprostraneniyu, ekologii i biologii parusnika mnemoziny Driopa mnemosyne (Linnaeus, 1758) (Lepidoptera: Papilionidae) na territorii Penzenskoy oblasti [Materials for Distribution, Ecology and Biology of Sailfish Mnemosyne Driopa mnemosyne (Linnaeus, 1758) (Lepidoptera: Papilionidae) in the Penza Region]. Izvestia Penzenskogo gosudarstvennogo ped. Univ. imeni V.G. Belinskogo, 2007, vol. 3, no. 7, pp. 308–313.
  4. Bolotov I.N., Gofarov M.Y., Rykov A.M., Frolov A.A., Kogut Y.E. Northern Boundary of the Range of the Clouded Apollo Butterfly Parnassius mnemosyne (L.) (Papilionidae): Climate Influence or Degradation of Larval Host Plants? Nota Lepidopterol, 2012, vol. 36, no. 1, pp. 19–33.
  5. Rykov A.M. Sovremennoe rasprostranenie mnemoziny (Driopa mnemosyne) v Arkhangel’skoy oblasti [Modern Distribution of Mnemosyne (Driopa mnemosyne) in the Arkhangelsk Region]. Problemy izucheniya i okhrany zhivotnogo mira na Severe: materialy dokl. Vseros. nauch. konf. s mezhdunar. uchastiem. Syktyvkar, Respublika Komi, Rossiya, 16–20 noyabrya 2009 g. [The Problems of Study and Conservation of Wildlife in the North: Proc. of the Sci. Conf. with Int. Participation. Syktyvkar, Komi Republic, Russia, 16-20 November, 2009]. Syktyvkar, 2009, pp. 370–373.
  6. Phillips S.J., Anderson R.P., Schapire R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model., 2006, vol. 190, no. 3–4, pp. 231–259.
  7. Thuiller W., Lafourcade B., Engler R., Araújo M.B. BIOMOD – a Platform for Ensemble Forecasting of Species Distributions. Ecography, 2009, vol. 32, no. 3, pp. 369–373.
  8. Soberón J., Nakamura M. Niches and Distributional Areas: Concepts, Methods, and Assumptions. Proc. Nat. Acad. Sci. USA, 2009, vol. 106, pp. 19644–19650.
  9. Wiens J.J., Graham C.H., Moen D.S., Smith S.A., Reeder T.W. Evolutionary and Ecological Causes of the Latitudinal Diversity Gradient in Hylid Frogs: Treefrog Trees Unearth the Roots of High Tropical Diversity. Am. Nat., 2006, vol. 168, no. 5, pp. 579–596.
  10. Svenning J.C., Fitzpatrick M.C., Normand S., Graham C.H., Pearman P.B., Iverson L.R., Skov F. Geography, Topography, and History Affect Realized-to-Potential Tree Species Richness Patterns in Europe. Ecography, 2010, vol. 33, no. 6, pp. 1070–1080.
  11. Nogués-Bravo D., Rodríguez J., Hortal J., Batra P., Araújo M.B. Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biol., 2008, vol. 6, no. 4, pp. 685–692.
  12. Hugall A., Moritz C., Moussalli A., Stanisic J. Reconciling Paleodistribution Models and Comparative Phylogeography in the Wet Tropics Rainforest Land Snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no. 9, pp. 6112–6117.
  13. Pearman P.B., D’Amen M., Graham C.H., Thuiller W., Zimmermann N.E. Within-Taxon Niche Structure: Niche Conservatism, Divergence and Predicted Effects of Climate Change. Ecography, 2010, vol. 33, no. 6, pp. 990–1003.
  14. Engler R., Randin C.F., Thuiller W., Dullinger S., Zimmermann N.E., Araújo M.B., Pearman P.B., Le Lay G., Piedallu C., Albert C.H., Choler P., Coldea G., De Lamo X., Dirnböck T., Gégout J.C., Gómez-García D., Grytnes J.A., Heegaard E., Høistad F., Nogués-Bravo D., Normand S., Puşcaş M., Sebastià M.T., Stanisci A., Theurillat J.P., Trivedi M.R., Vittoz P., Guisan A. 21st Century Climate Change Threatens Mountain Flora Unequally Across Europe. Glob. Chang. Biol., 2011, vol. 17, no. 7, pp. 2330–2341.
  15. Araújo M.B., Luoto M. The Importance of Biotic Interactions for Modelling Species Distributions Under Climate Change. Glob. Ecol. Biogeogr., 2007, vol. 16, no. 6, pp. 743–753.
  16. Settele J., Kudrna O., Harpke A., Kuehn I., van Swaay C., Verovnik R., Warren M., Wiemers M., Hanspach J., Hickler T., Kühn E., van Halder I., Veling K., Vliegenthart A., Wynhoff I., Schweiger O., Kühn I. Climatic Risk Atlas of European Butterflies. Sofia; Moscow, 2008.
  17. R: A Language and Environment for Statistical Computing. 2014.
  18. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978.
  19. Hijmans R., Guarino L. Computer Tools for Spatial Analysis of Plant Genetic Resources Data: 1. DIVA-GIS. Plant Genetic Resources, 2001, no. 127, pp. 15–19.
  20. QGIS Geographic Information System. 2009.
  21. Etten R.J.H., van Raster J. Geographic Analysis and Modeling with Raster Data. 2012.
  22. Habel J.C., Schmitt T., Meyer M., Finger A., Rödder D., Assmann T., Zachos F.E. Biogeography Meets Conservation: the Genetic Structure of the Endangered Lycaenid Butterfly Lycaena Helle (Denis & Schiffermüller, 1775). Biol. J. Linnean Soc., 2010, vol. 101, no. 1, pp. 155–168.
  23. Hijmans R.J., Phillips S., Leathwick J., Elithdismo J. Species Distribution Modeling. 2014.
  24. Austin M. Species Distribution Models and Ecological Theory: a Critical Assessment and Some Possible New Approaches. Ecol. Model., 2007, vol. 200, pp. 1–19.
  25. Moss R., Babiker M., Brinkman S., Calvo E. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. 2008.
  26. Weyant J., Azar C., Kainuma M., Kejun J., Nakicenovic N., Shukla P.R., Yohe G., La Rovere E. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel. Geneva, 2000.
  27. Weiss J.-C. The Parnassiinae of the World. P. 3. Canterbury, UK, 1999.
  28. Gratton P., Konopiński M.K., Sbordoni V. Pleistocene Evolutionary History of the Clouded Apollo (Parnassius mnemosyne): Genetic Signatures of Climate Cycles and a “Time-Dependent” Mitochondrial Substitution Rate. Molecular Ecology, 2008, vol. 17, no. 19, pp. 4248–4262.
  29. Simacheva E.V. Floristicheskiy kompleks Pinezhskogo gosudarstvennogo zapovednika i ego rol’ v sokhranenii reliktov Belomorsko-Kuloyskogo plato: avtoref. dis. … kand. biol. nauk [Floristic Complex of Pinezhsky State Reserve and Its Role in the Preservation of the White Sea-Kuloi Plateau Relics: Cand. Biol. Sci. Dis. Abs.]. Vilnus, 1989. 19 p.
  30. Struktura i dinamika prirodnykh komponentov Pinezhskogo zapovednika (severnaya tayga ETR, Arkhangel’skaya oblast’). Bioraznoobrazie i georaznoobrazie v karstovykh oblastyakh [Structure and Dynamics of Natural Components of Pinezhsky Reserve (the Northern Taiga, Arkhangelsk Region). Biodiversity and Geological Diversity in the Karst Areas]. Arkhangelsk, 2000.
  31. Bernard R.R., Daraż B.B. Relict Occurrence of East Palaearctic Dragonflies in Northern European Russia, With First Records of Coenagrion Glaciale in Europe (Odonata: Coenagrionidae). Int. J. of Odonatol., 2010, vol. 13, no. 1, pp. 39–62.
  32. Mokhnatkin A.S., Zezin I.S., Filippov B.Yu. Naselenie zhuzhelits (Coleoptera, Carabidae) razlichnykh biotsenozov karstovogo landshafta yugo-vostochnoy chasti Belomorsko-Kuloyskogo plato [The Ground Beetles (Coleoptera, Carabidae) Population of Different Biocenosis of the Karst Landscape of the South-Eastern Part of the White Sea–Kuloi Plateau]. Vestnik Severnogo (Arkticheskogo) univ. Ser.: Estestvennye nauki, 2010, no. 4.
  33. Bolotov I.N. Mnogoletnie izmeneniya fauny bulavousykh cheshuekrylykh (Lepidoptera, Diurna) severnoy taygi na zapade Russkoy ravniny [Long-Term Changes of Butterflies Fauna (Lepidoptera, Diurna) of the Northern Taiga on the West of the Russian Plain]. Ekologiya, 2004, vol. 35, no. 2, pp. 141–147.
  34. Shvartsman Yu.G., Bolotov I.N. Prostranstvenno-vremennaya neodnorodnost’ taezhnogo bioma v oblasti pleystotsenovykh materikovykh oledeneniy [Spatio-Temporal Heterogeneity of the Taiga Biome in the Pleistocene Continental Glaciations]. Yekaterinburg, 2008.