Address: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_est@narfu.ru
http://aer.narfu.ru/en/

ABOUT

Fast Fourier Transform for Solution of Convolution Equations on Dihedral Groups. P. 97–107

Версия для печати

Section: Physics. Mathematics. Informatics

UDC

517.9

Authors

Deundyak Vladimir Mikhaylovich,
Institute of Mathematics, Mechanics and Computer Science named after I.I. Vorovich, Southern Federal University (Rostov-on-Don, Russia)
e-mail: vlade@math.rsu.ru
Leonov Dmitriy Aleksandrovich,
Institute of Mathematics, Mechanics and Computer Science named after I.I. Vorovich, Southern Federal University (Rostov-on-Don, Russia)
e-mail: tori_92@inbox.ru

Abstract

Keywords

dihedral group, convolution equations, Fourier method, fast Fourier transform
Download (pdf, 4.7MB )

References

  1. Cooley J.W., Tukey J.W. An Algorithm for Machine Calculation of Complex Fourier Series. Mathematics of Computation, 1965, vol. 19, no. 90, pp. 297–301.
  2. Willsky A. On the Algebraic Structure of Certain Partially Observable Finite-State Markov Processes. Information and Control, 1978, vol. 38, pp. 179–212.
  3. Beth T. On the Computational Complexity of the General Discrete Fourier Transform. Theor. Comp. Sci., 1987, vol. 51, pp. 331–339.
  4. Clausen M. Fast Generalized Fourier Transforms. Theor. Comp. Sci., 1989, vol. 67, no. 1, pp. 55–63.
  5. Diaconis P., Rockmore D. Efficient Computation of Fourier Inversion for Finite Groups. J. of the ACM, 1994, vol. 41, no. 1, pp. 31–66.
  6. Baum U. Existence and Efficient Construction of Fast Fourier Transforms for Supersolvable Groups. Computational Complexity, 1991, vol. 1, pp. 235–256.
  7. Brigham E. The Fast Fourier Transform and its Applications. NJ, USA, 1988.
  8. Diaconis P. Group Representations in Probability and Statistics. Hayward, USA, 1988.
  9. Lafferty J., Rockmore D. Codes and Iterative Decoding on Algebraic Expander Graphs. Proceedings of International Symposium on Information Theory and its Application, Honolulu, November 5–8, 2000. Honolulu, Hawaii, USA, 2000.
  10. Rockmore D. Recent Progress and Applications in Group FFTs. Computational Noncommutative Algebra and Applications, 2004, vol. 136, pp. 227–254.
  11. Leinz R. Using Representations of the Dihedral Groups in the Design of Early Vision Filters. Kyoto, 1993.
  12. Zagorodnov I.A., Tarasov R.P. Zadacha difraktsii na telakh s nekommutativnoy konechnoy gruppoy simmetriy i chislennoe ee reshenie [The Problem of Diffraction on Bodies with Non-Commutative Finite Group of Symmetries and Numerical Solution]. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1997, vol. 37, no. 10, pp. 1246–1262.
  13. Glazman I.M., Lyubich Yu.I. Konechnomernyy lineynyy analiz v zadachakh [Finite-Dimensional Linear Analysis in the Problems]. Moscow, 1969.
  14. Kirillov A.A. Elementy teorii predstavleniy [Elements of Theory of Representations]. Moscow, 1978.
  15. Hewitt E., Ross K. Abstract Harmonic Analysis. Vol. 2. Heidelberg, 1970.