Address: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_est@narfu.ru
http://aer.narfu.ru/en/

ABOUT

Endemism of Freshwater Fish Fauna in the Geothermal Regions: a Review of the Molecular and Biogeographic Studies. P. 29–50

Версия для печати

Section: Biology

UDC

575.86:574.9

Authors

Bolotov Ivan Nikolaevich
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences
Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation;
e-mail: inepras@yandex.ru
Aksenova Ol’ga Vladimirovna
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences
Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation;
e-mail: olgausa4eva@yandex.ru
Bespalaya Yuliya Vladimirovna
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences
Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation;
e-mail: jbespalaja@yandex.ru
Spitsyn Vitaliy Mikhaylovich
Institute of Ecological Problems of the North, Ural Branch of the Russian Academy of Sciences
Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation;
e-mail: vitalik91993@ya.ru

Abstract

The geothermal regions differ by the underrun of thermally enriched waters and gases from the earth interior to the surface, which has a warming effect on the ecosystems. An unusual fauna formed in the hot springs, warm streams, warmed lakes and swamps has been of a special interest of the zoologists and biogeographers for a long time. Many of the thermal hydrobiont populations were described as local endemic taxa of the species or subspecies rank on the basis of morphological characters. However, their status is the matter of long debate. The results of the molecular studies of various freshwater fish species, which have been described from the thermal habitats, are summarized in the review. Some of them actually belong to the intraspecific forms of prevailing species. These forms have distinct morphological differences from the zonal populations but are genetically identical or analogous. Some other species really belong to the divergent phylogenetic lineages, which can be considered as local thermophilic endemics. The largest number of endemic species inhabits the South of the United States and Mexico. The high-level fish fauna endemism in thermal systems of these regions can be due to their ancient origin as well as the similarity of the environmental conditions of zonal desert water bodies with thermal systems. Various species of cyprinodont fishes inhabit the geothermal water bodies of Eurasia, North and Central America. The populations of Salmoniformes and Gasterosteiformes are also found in some geothermal systems of the Far North of Eurasia. Characiformes, Siluriformes and Perciformes actively populate subtropical thermal springs in South America. The hydrothermal systems can be considered as a kind of “evolutionary traps” for freshwater fishes, which cannot return to the non-geothermal habitats, as the evolution in thermal systems develops in the direction of specialization, adaptation to a unique and very local set of environmental conditions.

Keywords

phylogeography, molecular phylogeny, hot springs, cyprinodont fishes, Cyprinodontiformes, endemic species, speciation
Download (pdf, 1.8MB )

References

  1. Chapman D.S., Clement M.D., Mase C.W. Thermal Regime of the Escalante Desert, Utah, with an Analysis of the Newcastle Geothermal System. JGR-Solid Earth, 1981, vol. 86, no. B12, pp. 11735–11746. 
  2. Kiryukhin A.V., Rychkova T.V., Dubrovskaya I.K. Formation of the Hydrothermal System in Geysers Valley (Kronotsky Nature Reserve, Kamchatka) and Triggers of the Giant Landslide. Applied Geochemistry, 2012, vol. 27, no. 9, pp. 1753–1766. 
  3. O’Gorman E.J., Benstead J.P., Cross W.F., Friberg N., Hood J.M., Johnson P.W., Sigurdsson B.D., Woodward G. Climate Change and Geothermal Ecosystems: Natural Laboratories, Sentinel Systems, and Future Refugia. Global Change Biology, 2014, vol. 20, no. 11, pp. 3291–3299. 
  4. Donnelly-Nolan J.M., Burns M.G., Goff F.E., Peters E.K., Thompson J.M. The Geysers-Clear Lake Area, California; Thermal Waters, Mineralization, Volcanism, and Geothermal Potential. Economic Geology, 1993, vol. 88, no. 2, pp. 301–316. 
  5. Hashimoto T., Tanaka, Y. A Large Self‐Potential Anomaly on Unzen Volcano, Shimabara Peninsula, Kyushu Island, Japan. Geophys. Res. Lett., 1995, vol. 22, no. 3, pp. 191–194. 
  6. Laverov N.P., Kovalenko V.I., Yarmolyuk V.V., Bogatikov O.A., Akinin V.V., Gurbanov A.G., Evdokimov A.N., Kudryashova E.A., Pevzner M.M., Ponomareva V.V., Sakhno V.G. Recent Volcanism of Northern Eurasia: Regionalization and Formation Settings. Doklady Earth Sciences, 2006, vol. 410, no. 1, pp. 1048–1052. 
  7. Bindeman I.N., Leonov V.L., Izbekov P.E., Ponomareva V.V., Watts K.E., Shipley N.K., Perepelov A.B., Bazanova L.I., Jicha B.R., Singer B.S., Schmitt A.K., Portnyagin M.V., Chen C.H. Large-Volume Silicic Volcanism in Kamchatka: Ar–Ar and U–Pb Ages, Isotopic, and Geochemical Characteristics of Major Pre-Holocene Caldera-Forming Eruptions. Journal of Volcanology and Geothermal Research, 2010, vol. 189, no. 1, pp. 57–80. 
  8. Nikulin A., Levin V., Carr M., Herzberg C., West M. Evidence for Two Upper Mantle Sources Driving Volcanism in Central Kamchatka. Earth and Planetary Science Letters, 2012, vol. 321, pp. 14–19. 
  9. Malov A.I., Bolotov I.N., Pokrovsky O.S., Zykov S.B., Tokarev I.V., Arslanov K.A., Druzhinin S.V., Lyubas A.A., Gofarov M.Y., Kostikova I.A., Kriauciunas V.V., Chernov S.B., Maksimov F.E., Bespalaya Yu.V., Aksenova O.V. Modeling Past and Present Activity of a Subarctic Hydrothermal System Using O, H, C, U and Th Isotopes. Applied Geochemistry, 2015, vol. 63, pp. 93–104. 
  10. Smirnov Ya.B. Teplovoe pole territorii SSSR: poyasnitel’naya zapiska k kartam teplovogo potoka i glubinnykh temperatur v masshtabe 1:10000000 [Thermal Field of the Territory of the USSR: the Explanatory Memorandum to the Maps of a Heat Flow and Abyssal Temperatures in the Scale of 1:10000000]. Moscow, 1980. 150 p. 
  11. Bolotov I.N., Bespalaya Y.V., Usacheva O.V. Ecology and Evolution of Hydrobionts in Hot Springs of the Subarctic and Arctic: Formation of Similar Assemblages, Adaptation of Species, and Microevolutionary Processes. Biology Bulletin Reviews, 2012, vol. 2, no. 4, pp. 340–348. 
  12. Woodward G., Dybkjaer J.B., Ólafsson J.S., Gíslason G.M., Hannesdóttir E.R., Friberg N. Sentinel Systems on the Razor’s Edge: Effects of Warming on Arctic Geothermal Stream Ecosystems. Global Change Biology, 2010, vol. 16, no. 7, pp. 1979–1991. 
  13. O’Gorman E.J., Pichler D.E., Adams G., Benstead J.P., Coen H., Craig N., Cross W.F., Demars B.O.L., Friberg N., Gislason G.M., Gudmundsdottir R., Hawczak A., Hood J.M., Hudson L.N., Johansson L., Johansson M.P., Junker J.R., Laurila A., Manson J.R., Mavromati E., Nelson D., Olafsson J.S., Perkins D.M., Petchey O.L., Plebani M., Reuman D.C., Rall B.C., Stewart R., Thompson M.S.A., Woodward G. Impacts of Warming on the Structure and Functioning of Aquatic Communities: Individual- to Ecosystem-Level Responses. Advances in Ecological Research, 2012, vol. 47, pp. 81–176. 
  14. Friberg N., Dybkjaer J.B., Olafsson J.S., Gislason G.M., Larsen S.E., Lauridsen T.L. Relationships Between Structure and Function in Streams Contrasting in Temperature. Freshwater Biology, 2009, vol. 54, no. 10, pp. 2051– 2068. 
  15. Greenway R., Arias-Rodriguez L., Diaz P., Tobler M. Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. Diversity, 2014, vol. 6, no. 3, pp. 597–632. 
  16. Brues C.T. Observation on Animal Life in the Thermal Waters of Yellowstone Park, with Consideration of the Thermal Environment. Proc. American Academy of Arts and Sci., 1924, vol. 59, pp. 371–437. 
  17. Brues C.T. Animal Life in Hot Springs. The Quarterly Review of Biology, 1927, vol. 2, no. 2, pp. 181–203. 
  18. Brues C.T. Studies of the Fauna of Hot Springs in the Western United States and the Biology of Thermophilous Animals. Proc. American Academy of Arts and Sci., 1928, vol. 63, pp. 139–228. 
  19. Brues C.T. Further Studies of the Fauna of North American Hot Springs. Proc. American Academy of Arts and Sci., 1932, vol. 67, pp. 185–303. 
  20. Brues C.T. Studies of the Fauna of Some Thermal Springs in the Dutch East Indies. Proc. American Academy of Arts and Sci., 1939, vol. 73, pp. 71–95. 
  21. Mason I.L. Studies on the Fauna of an Algerian Hot Spring. The Journal of Experimental Biology, 1939, vol. 16, pp. 487–498. 
  22. Tuxen S.L. The Hot Spring of Iceland, Their Animal Communities and Their Zoogeographical Significance. The Zoology of Iceland, 1944, vol. 1, no. 11, pp. 1–216. 
  23. Zhadin V.I. Zhizn’ v istochnikakh [The Life in the Water Bodies]. Zhizn’ presnykh vod SSSR [The Life of Fresh Waters of the USSR. Vol. 3]. Ed. by E.N. Pavlovskiy, V.I. Zhadin. Moscow; Leningrad, 1950, pp. 707–724. 
  24. Hubbs C.L., Miller R.R. The Great Basin with Emphasis on Glacial and Postglacial Times. II. The Zoological Evidence. Bulletin of the University of Utah, 1948, vol. 38, no. 20, pp. 17–166. 
  25. Kruglov N.D., Starobogatov Ya.I. Guide to Recent Molluscs of Northern Eurasia. 3. Annotated and Illustrated Catalogue of Species of the Family Lymnaeidae (Gastropoda Pulmonata Lymnaeiformes) of Palaearctic and Adjacent River Drainage Areas. Part 1. Ruthenica, 1993, vol. 3, no. 1, pp. 65–92. 
  26. Minckley W.L., Minckley C.O. Cyprinodon pachycephalus, a New Species of Pupfish (Cyprinodontidae) From the Chihuahuan Desert of Northern Mexico. Copeia, 1986, no. 1, pp. 184–192. 
  27. Miller R.R. The Cyprinodont Fishes of the Death Valley System of Eastern California and Southwestern Nevada. Miscellaneous Publications of Museum of Zoology of University of Michigan, 1948, vol. 68, pp. 1–155. 
  28. Marshall R. A New Species of Water Mite From Thermal Springs. Psyche, 1928, vol. 35, pp. 92–97. 
  29. Müller G.J. Scardinius racovitzai n. sp. (Pisces, Cyprinidae), eine reliktäre Rotfeder aus Westrumänien. Senckenbergiana biologica, 1958, vol. 39, pp. 165–168. 
  30. Külköylüoglu O., Meisch C., Rust R.W. Thermopsis Thermophila n. Gen. n. sp. from Hot Springs in Nevada, USA (Crustacea, Ostracoda). Hydrobiologia, 2003, vol. 499, no. 1–3, pp. 113–123. 
  31. Shuster S.M., Miller M.P., Lang B.K., Zorich N., Huynh L., Keim P. The Effects of Controlled Propagation on an Endangered Species: Genetic Differentiation and Divergence in Body Size among Native and Captive Populations of the Socorro Isopod (Crustacea: Flabellifera). Conservation Genetics, 2005, no. 6, pp. 355–368. 
  32. Deacon J.E., Williams J.E. Annotated List of the Fishes of Nevada. Proc. Biol. Soc. Washington, 1984, vol. 97, no. 1, pp. 103–118. 
  33. Bolotov I., Bespalaya Y., Aksenova O., Aksenov A., Bolotov N., Gofarov M., Kondakov A., Paltser I., Vikhrev I. A Taxonomic Revision of Two Local Endemic Radix Spp. (Gastropoda: Lymnaeidae) from Khodutka Geothermal Area, Kamchatka, Russian Far East. Zootaxa, 2014, vol. 3869, no. 5, pp. 585–593. 
  34. Vinarski M.V., Aksenova O.V., Bespalaya Y.V., Bolotov I.N., Schniebs K., Gofarov M.Y., Kondakov A.V. Radix Dolgini: The Integrative Taxonomic Approach Supports the Species Status of a Siberian Endemic Snail (Mollusca, Gastropoda, Lymnaeidae). Comptes Rendus Biologies, 2016, vol. 339, no. 1, pp. 24–36. 
  35. Vinarski M.V., Aksenova O.V., Bespalaya Y.V., Bolotov I.N., Gofarov M.Y., Kondakov A.V. Ladislavella catascopium tumrokensis (Kruglov et Starobogatov, 1985): The First Molecular Evidence of a Nearctic Clade of Lymnaeid Snails Inhabiting Eurasia. Systematics and Biodiversity, 2016 (in press). 
  36. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: a Better Web Interface. Nucleic Acids Research, 2008, vol. 36, pp. W5–W9. 
  37. McGinnis S., Madden T.L. BLAST: at the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Research, 2004, vol. 32, pp. W20–W25. 
  38. Ratnasingham S., Hebert P.D.N. A DNA-Based Registry for All Animal Species: the Barcode Index Number (BIN) System. PLoS ONE, 2013, vol. 8, no. 8, p. e66213. 
  39. Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Berlin, 2007. 646 p. 
  40. Bohlen J., Freyhof J., Nolte A. Sex Ratio and Body Size in Cobitis elongatoides and Sabanejewia balcanica (Cypriniformes, Cobitidae) from a Thermal Spring. Folia Zoologica, 2008, vol. 57, no. 1/2, pp. 191–197. 
  41. Sîrbu I., Gagiu A., Benedek A.M. On the Brink of Extinction: Fate of the Peţea Thermal Lake (Romania) and Its Endemic Species. Tentacle, 2013, no. 21, pp. 34–37. 
  42. Behrens-Chapuis S., Herder F., Geiger M.F., Esmaeili H.R., Hamidan N.A., Özuluğ M., Šanda R. Adding Nuclear Rhodopsin Data Where Mitochondrial COI Indicates Discrepancies – Can This Marker Help to Explain Conflicts in Cyprinids? DNA Barcodes, 2015, vol. 3, no. 1, pp. 187–199. 
  43. Wu Y., Wu C. The Fishes of the Qinghai-Xizang Plateau. Chengdu, China, 1992. 599 p. 
  44. Ahmad S.M., Bhat F.A., Balkhi M.U.H., Bhat B.A. Mitochondrial DNA Variability to Explore the Relationship Complexity of Schizothoracine (Teleostei: Cyprinidae). Genetica, 2014, vol. 142, no. 6, pp. 507–516. 
  45. Qi D., Guo S., Tang J., Zhao X., Liu J. Mitochondrial DNA Phylogeny of Two Morphologically Enigmatic Fishes in the Subfamily Schizothoracinae (Teleostei: Cyprinidae) in the Qinghai‐Tibetan Plateau. Journal of Fish Biology, 2007, vol. 70, pp. 60–74. 
  46. Qi D., Guo S., Zhao X., Yang J.I.E., Tang W. Genetic Diversity and Historical Population Structure of Schizopygopsis pylzovi (Teleostei: Cyprinidae) in the Qinghai–Tibetan Plateau. Freshwater Biology, 2007, vol. 52, no. 6, pp. 1090–1104. 
  47. Qi D., Guo S., Chao Y., Kong Q., Li C., Xia M., Xie B., Zhao K. The Biogeography and Phylogeny of Schizothoracine Fishes (Schizopygopsis) in the Qinghai‐Tibetan Plateau. Zoologica Scripta, 2015, vol. 44, no. 5, pp. 523–533. 
  48. Zhang R., Ludwig A., Zhang C., Tong C., Li G., Tang Y., Peng Z., Zhao K. Local Adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci. Rep., 2015, no. 5, p. 9780. 
  49. Gertsenshteyn S. Ryby [Fish]. Nauchnye rezul’taty puteshestviy N.M. Przheval’skogo po Tsentral’noy Azii. Otdel zoologicheskiy. T. 3. Ch. 2. Vyp. 3 [Scientific Results of the N.M. Przewalski’s Travel in Central Asia. Department of Zoology. Vol. 3. Part 2. Iss. 3]. St. Petersburg, 1891, pp. 181–262. 
  50. Qiao H., Cheng Q., Chen Y. Sequence and Organization of the Complete Mitochondrial Genome of Schizopygopsis thermalis (Cypriniformes: Cyprinidae). Mitochondrial DNA, 2014, vol. 25, no. 1, pp. 23–24. 
  51. Qiao H., Cheng Q., Chen Y., Ren G. The Complete Mitochondrial Genome Sequence of Schizopygopsis younghusbandi (Cypriniformes: Cyprinidae). Mitochondrial DNA, 2013, vol. 24, no. 4, pp. 388–390. 
  52. Qiao H., Cheng Q., Chen Y. Characterization of the Complete Mitochondrial Genome of Gymnocypris namensis (Cypriniformes: Cyprinidae). Mitochondrial DNA, 2014, vol. 25, no. 1, pp. 17–18. 
  53. Qiao H., Cheng Q., Chen Y. Complete Mitochondrial Genome Sequence of Gymnocypris dobula (Cypriniformes: Cyprinidae). Mitochondrial DNA, 2014, vol. 25, no. 1, pp. 21–22. 
  54. Clark M.K., Schoenbohm L.M., Royden L.H., Whipple K.X., Burchfiel B.C., Zhang X., Tang W., Wang E., Chen L. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 2004, vol. 23, iss. 1, citeID TC1006. 
  55. Allen D.J., Smith K.G., Darwall W.R.T. The Status and Distribution of Freshwater Biodiversity in Indo-Burma. Cambridge, UK; Gland, Switzerland, 2012. 158 p. 
  56. Min R., Yang J.X., Chen X.Y., Whitterbottom R., Mayden R. Phylogenetic Relationships of the Genus Homatula (Cypriniformes: Nemacheilidae), with Special Reference to the Biogeographic History Around the Yunnan-Guizhou Plateau. Zootaxa, 2012, vol. 3586, pp. 78–94. 
  57. Yang J., Yang J.X., Chen X.Y. A Re‐Examination of the Molecular Phylogeny and Biogeography of the Genus Schizothorax (Teleostei: Cyprinidae) through Enhanced Sampling, with Emphasis on the Species in the Yunnan–Guizhou Plateau, China. Journal of Zoological Systematics and Evolutionary Research, 2012, vol. 50, no. 3, pp. 184–191. 
  58. Wang M., Yang J.X., Chen X.Y. Molecular Phylogeny and Biogeography of Percocypris (Cyprinidae, Teleostei). PLoS ONE, 2013, vol. 8, no. 6, p. e61827. 
  59. Wu X., Luo J., Huang S., Chen Z., Xiao H., Zhang Y. Molecular Phylogeography and Evolutionary History of Poropuntius huangchuchieni (Cyprinidae) in Southwest China. PloS ONE, 2013, vol. 8, no. 11, p. e79975. 
  60. Makhrov A.A., Artamonova V.S., Karabanov D.P. Finding of Topmouth Gudgeon Pseudorasbora parva (Temminck et Schlegel) (Actinopterygii: Cyprinidae) in the Brahmaputra River Basin (Tibetan Plateau, China). Russian Journal of Biological Invasions, 2013, vol. 4, no. 3, pp. 174–179. 
  61. Scoppettone G.G., Burge H.L., Tuttle P.L. Life History, Abundance, and Distribution of Moapa Dace (Moapa coriacea). The Great Basin Naturalist, 1992, vol. 52, no. 3, pp. 216–225. 
  62. Scoppettone G.G., Rissler P.H., Nielsen M.B., Harvey J.E. The Status of Moapa coriacea and Gila seminuda and Status Information on Other Fishes of the Muddy River, Clark County, Nevada. The Southwestern Naturalist, 1998, vol. 43, no. 2, pp. 115–122. 
  63. La Rivers I., Trelease T.J. An Annotated Check List of Fishes of Nevada. California Fish and Game, 1952, vol. 38, no. 1, pp. 113–123. 
  64. April J., Mayden R.L., Hanner R.H., Bernatchez L. Genetic Calibration of Species Diversity among North America’s Freshwater Fishes. Proc. Natl. Acad. Sci., 2011, vol. 108, no. 26, pp. 10602–10607. 
  65. April J., Hanner R.H., Mayden R.L., Bernatchez L. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes. PloS ONE, 2013, vol. 8, no. 7, p. e70296. 
  66. Martin S.D., Bonett R.M. Biogeography and Divergent Patterns of Body Size Disparification in North American Minnows. Molecular Phylogenetics and Evolution, 2015, vol. 93, pp. 17–28. 
  67. Schoenhuth S., Shiozawa D.K., Dowling T.E., Mayden R.L. Molecular Systematics of Western North American Cyprinids (Cypriniformes: Cyprinidae). Zootaxa, 2012, vol. 3586, pp. 281–303. 
  68. 68. Miller R.R., Williams J.D., Williams J.E. Extinctions of North American Fishes During the Past Century. Fisheries, 1989, vol. 14, no. 6, pp. 22–38. 
  69. Vinyard G.L. Distribution of a Thermal Endemic Minnow, the Desert Dace (Eremichthys acros), and Observations of Impacts of Water Diversion on Its Population. The Great Basin Naturalist, 1996, pp. 360–368. 
  70. Miller R.R. Coevolution of Deserts and Pupfishes (Genus Cyprionodon) in the American Southwest. Fishes in North American Deserts. Ed. by R.J. Naiman, D.L. Soltz. New York, 1981, pp. 39–94. 
  71. Hillyard S.D., Podrabsky J.E., van Breukelen F. Desert Environments. Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments. Ed. by R. Riesch, M. Tobler, M. Plath. Switzerland, 2015, pp. 59–83. 
  72. Martin C.H., Wainwright P.C. A Remarkable Species Flock of Cyprinodon Pupfishes Endemic to San Salvador Island, Bahamas. Bulletin of the Peabody Museum of Natural History, 2013, vol. 54, no. 2, pp. 231–241. 
  73. Heuton M., Ayala L., Burg C., Dayton K., McKenna K., Morante A., Puentedura G., Urbina N., Hillyard S., Steinberg S., van Breukelen F. Paradoxical Anaerobism in Desert Pupfish. Journal of Experimental Biology, 2015, vol. 218, no. 23, pp. 3739–3745. 
  74. Tobler M., Riesch R., Plath M. Extremophile Fishes: an Integrative Synthesis. Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments. Switzerland, 2015, pp. 279–296. 
  75. Carson E.W., de la Maza-Benignos M., de Lourdes Lozano-Vilano M., Vela-Valladares L., Banda-Villanueva I., Turner T.F. Conservation Genetic Assessment of the Critically Endangered Julimes Pupfish, Cyprinodon julimes. Conservation Genetics, 2014, vol. 15, no. 2, pp. 483–488. 
  76. Duvernell D.D., Turner B.J. Evolutionary Genetics of Death Valley Pupfish Populations: Mitochondrial DNA Sequence Variation and Population Structure. Molecular Ecology, 1998, vol. 7, no. 3, pp. 279–288. 
  77. Reed J.M., Stockwell C.A. Evaluating an Icon of Population Persistence: the Devil’s Hole Pupfish. Proc. Biol. Sci., 2014, vol. 281, no. 1794, p. 20141648. 
  78. Echelle A.A., Carson E.W., Echelle A.F., Van Den Bussche R.A., Dowling T.E., Meyer A. Historical Biogeography of the New-World Pupfish Genus Cyprinodon (Teleostei: Cyprinodontidae). Copeia, 2005, no. 2, pp. 320–339. 
  79. Wilcox J.L., Martin A.P. The Devil’s in the Details: Genetic and Phenotypic Divergence between Artificial and Native Populations of the Endangered Pupfish (Cyprinodon diabolis). Animal Conservation, 2006, vol. 9, no. 3, pp. 316–321. 
  80. Scoppettone G.G., Rissler P.H. Status of the Preston White River Springfish (Crenichthys baileyi albivallis). Western North American Naturalist, 2002, vol. 62, no. 1, pp. 82–87. 
  81. Webb S.A., Graves J.A., Macias-Garcia C., Magurran A.E., Foighil D.O., Ritchie M.G. Molecular Phylogeny of the Livebearing Goodeidae (Cyprinodontiformes). Molecular Phylogenetics and Evolution, 2004, vol. 30, no. 3, pp. 527–544. 
  82. Esmaeili H.R., Teimori A., Gholami Z., Reichenbacher B. Two New Species of the Tooth-Carp Aphanius (Teleostei: Cyprinodontidae) and the Evolutionary History of the Iranian Inland and Inland-Related Aphanius Species. Zootaxa, 2014, vol. 3786, no. 3, pp. 246–268. 
  83. Coad B.W. A Re-Description of Aphanius ginaonis (Holly, 1929) from Southern Iran (Osteichthyes: Cyprinodontiformes). Journal of Natural History, 1980, vol. 14, no. 1, pp. 33–40. 
  84. Reichenbacher B., Kamrani E., Esmaeili H.R., Teimori A. The Endangered Cyprinodont Aphanius ginaonis (Holly, 1929) from Southern Iran is a Valid Species: Evidence from Otolith Morphology. Environmental Biology of Fishes, 2009, vol. 86, no. 4, pp. 507–521. 
  85. Golmoradizadeh A., Kamrani E., Sajjadi M.M. Life History Traits of Aphanius ginaonis Holly, 1929 (Cyprinodontidae) and Potential Risks of Extinction in the Geno Hot Spring (Iran) Population. Journal of Applied Ichthyology, 2012, vol. 28, no. 1, pp. 31–33. 
  86. Zare P., Naderi M., Asghari S. Reproductive Biology of the Geno Hot Spring Tooth-Carp (Aphanius ginaonis Holly, 1929) in Southern Iran. Environmental Biology of Fishes, 2015, vol. 98, no. 5, pp. 1365–1371. 
  87. Hrbek T., Meyer A. Closing of the Tethys Sea and the Phylogeny of Eurasian Killifishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 2003, vol. 16, no. 1, pp. 17–36. 
  88. Rosen D.E., Bailey R.M. The Poeciliid Fishes (Cyprinodontiformes), Their Structure, Zoogeography, and Systematics. Bulletin of the American Museum of Natural History, 1963, vol. 126, pp. 1–176. 
  89. Palacios M., Arias-Rodriguez L., Plath M., Eifert C., Lerp H., Lamboj A., Voelker G., Tobler M. The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs. PloS ONE, 2013, vol. 8, no. 8, p. e71069. 
  90. van Oosterhout C., Mohammed R.S., Hansen H., Archard G.A., McMullan M., Weese D.J., Cable J. Selection by Parasites in Spate Conditions in Wild Trinidadian Guppies (Poecilia reticulata). International Journal for Parasitology, 2007, vol. 37, no. 7, pp. 805–812. 
  91. Tobler M., Riesch R., Garcíade León F.J., Schlupp I., Plath M. Two Endemic and Endangered Fishes, Poecilia sulphuraria (Alvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei) as Only Survivors in a Small Sulphidic Habitat. Journal of Fish Biology, 2008, vol. 72, no. 3, pp. 523–533. 
  92. Riesch R., Plath M., Schlupp I., Tobler M., Brian Langerhans R. Colonisation of Toxic Environments Drives Predictable Life‐History Evolution in Livebearing Fishes (Poeciliidae). Ecology Letters, 2014, vol. 17, no. 1, pp. 65–71. 
  93. Lydeard C., Wooten M.C., Meyer A. Molecules, Morphology, and Area Cladograms: a Cladistic and Biogeographic Analysis of Gambusia (Teleostei: Poeciliidae). Systematic Biology, 1995, vol. 44, no. 2, pp. 221–236. 
  94. Tabibzadeh I., Behbehani G., Nakhai R. Use of Gambusia Fish in the Malaria Eradication Programme of Iran. Bulletin of the World Health Organization, 1970, vol. 43, no. 4, pp. 623–626. 
  95. Riesch R., Oranth A., Dzienko J., Karau N., Schießl A., Stadler S., Wigh A., Zimmer C., Arias-Rodrigue L., Schlupp I., Plath M. Extreme Habitats are not Refuges: Poeciliids Suffer from Increased Aerial Predation Risk in Sulphidic Southern Mexican Habitats. Biological Journal of the Linnean Society, 2010, vol. 101, no. 2, pp. 417–426. 
  96. Lydeard C., Wooten M.C., Meyer A. Cytochrome-B Sequence Variation and a Molecular Phylogeny of the Live- Bearing Fish Genus Gambusia (Cyprinodontiformes: Poeciliidae). Canadian Journal of Zoology, 1995, vol. 73, no. 2, pp. 213–227. 
  97. Bolotov I.N., Novoselov A.P., Bespalaya Y.V., Usacheva O.V. Feeding of European Grayling Thymallus thymallus (Salmoniformes: Thymallidae) in the Early Winter Period in the Pymvashor Stream (Subarctic Hydrothermal System). Journal of Ichthyology, 2012, vol. 52, no. 2, pp. 180–184. 
  98. Esin E.V., Sorokin Y.V. Residential Form of White-Spotted Char Salvelinus Leucomaenis Inhabiting the Warm Stream Discharging into Semlyachikskii Firth (Kronotskii Natural Reserve, Kamchatka). Journal of Ichthyology, 2012, vol. 52, no. 2, pp. 172–179. 
  99. Chereshnev I.A. Presnovodnye ryby Chukotki [Freshwater Fish of Chukotka]. Magadan, 2008. 324 p. 
  100. Menni R.C., Miquelarena A.M., Gómez S.E. Fish and Limnology of a Thermal Water Environment in Subtropical South America. Environmental Biology of Fishes, 1998, vol. 51, no. 3, pp. 265–283. 
  101. Hasnain S.S., Shuter B.J., Minns C.K. Phylogeny Influences the Relationships Linking Key Ecological Thermal Metrics for North American Freshwater Fish Species. Canadian Journal of Fisheries and Aquatic Sciences, 2013, vol. 70, no. 7, pp. 964–972. 
  102. Artamonova V.S., Kucheryavyy A.V., Makhrov A.A. Nucleotide Sequence Diversity of the Mitochondrial Cytochrome Oxidase Subunit I (COI) Gene of the Arctic Lamprey (Lethenteron camtschaticum) in the Eurasian Part of the Range. Hydrobiologia, 2015, vol. 757, no. 1, pp. 197–208. 
  103. Bolotov I.N., Bespalaya Y.V., Vikhrev I.V., Aksenova O.V., Aspholm P.E., Gofarov M.Y., Klishko O.K., Kolosova Y.S., Kondakov A.V., Lyubas A.A., Paltser I.S., Konopleva E.S., Tumpeesuwan S., Bolotov N.N., Voroshilova I.S. Taxonomy and Distribution of the Freshwater Pearl Mussels (Unionoida: Margaritiferidae) in the Far East of Russia. PLoS ONE, 2015, vol. 10, no. 5, p. e0122408. 
  104. Artamonova V.S., Kucheryavyy A.V., Pavlov D.S. Posledovatel’nosti gena sub”edinitsy I tsitokhromoksidazy (COI) mtDNK minog, otnosimykh k Lethenteron camtschaticum i L. reissneri complex, ne imeyut razlichiy vidovogo urovnya [The Sequences of Cytochrome Oxidase Subunit I (COI) Gene of Lampreys MtDNA Attributable to Lethenteron camtschaticum and L. reissneri Complex, do Not Have the Species-Level Differences]. Doklad RAN [Proc. Russian Academy of Sci.], 2011, vol. 437, no. 5, pp. 703–708. 
  105. Bolotov I.N., Makhrov A.A., Bespalaya Yu.V., Vikhrev I.V., Aksenova O.V., Aspkhol’m P.E., Gofarov M.Yu., Ostrovskiy A.N., Popov I.Yu., Pal’tser I.S., Rudzite M., Rudzitis M., Voroshilova (Sergeeva) I.S., Sokolova S.E. Itogi testirovaniya komparatornogo metoda: krivizna frontal’nogo secheniya stvorki rakoviny ne mozhet sluzhit’ sistematicheskim priznakom u presnovodnykh zhemchuzhnits roda Margaritifera [The Results of the Comparator Method Test: the Curvature of the Front Section of a Scallop-Shell Can Not be Used as a Systematic Feature of Freshwater Pearl Mussels of the Genus Margaritifera]. Izvestiya RAN. Seriya biologicheskaya [Biology Bulletin], 2013, no. 2, pp. 245–256. 
  106. Borovikova E.A., Makhrov A.A. Sistematicheskoe polozhenie i proiskhozhdenie sigov (Coregonus, Coregonidae, Osteichthyes) Evropy. Geneticheskiy podkhod [Systematic Position and Origin of the Whitefish (Coregonus, Coregonidae, Osteichthyes) in Europe. The Genetic Approach]. Uspekhi sovremennoy biologii [Biology Bulletin Reviews], 2009, vol. 129, no. 1, pp. 58–66. 
  107. Borovikova E.A., Makhrov A.A. Izuchenie populyatsiy perekhodnoy zony mezhdu evropeyskoy i sibirskoy ryapushkami (Coregonus): rol’ sredy obitaniya v vidoobrazovanii [The Study of the Populations of the Transition Zone Between the European and Siberian Whitefish (Coregonus): the Role of the Environment in Speciation]. Printsipy ekologii [The Principles of Ecology], 2012, vol. 1, no. 4, pp. 5–20. 
  108. Borovikova E.A., Makhrov A.A. Sistematicheskoe polozhenie i proiskhozhdenie sigov (Coregonus) Evropy: morfoekologicheskiy podkhod [Systematic Position and Origin of the Whitefish (Coregonus) of Europe: the Morphoecological Approach]. Trudy Karel’skogo nauchnogo tsentra RAN [Transactions of Karelian Research Centre of the Russian Academy of Sciences], 2013, no. 6, pp. 105–115. 
  109. 109. Makhrov A.A., Bolotov I.N. Puti rasseleniya i vidovaya prinadlezhnost’ presnovodnykh zhivotnykh severa Evropy (obzor molekulyarno-geneticheskikh issledovaniy) [The Resettlement Paths and Specific Assignment of Freshwater Animals of the North of Europe (Overview of Molecular Genetic Studies)]. Genetika [Russian Journal of Genetics], 2006, vol. 42, no. 10, pp. 1319–1334. 
  110. Brown J.H., Feldmeth C.R. Evolution in Constant and Fluctuating Environments: Thermal Tolerances of Desert Pupfish (Cyprinodon). Evolution, 1971, vol. 25, no. 2, pp. 390–398. 
  111. Unmack P.J. Fish Persistence and Fluvial Geomorphology in Central Australia. Journal of Arid Environments, 2001, vol. 49, no. 4, pp. 653–669. 
  112. 112. Williams W.D. Biotic Adaptations in Temporary Lentic Waters, with Special Reference to Those in Semi-Arid and Arid Regions. Hydrobiologia, 1985, vol. 125, no. 1, pp. 85–110. 
  113. Kavembe G.D., Machado-Schiaffino G., Meyer A. Pronounced Genetic Differentiation of Small, Isolated and Fragmented Tilapia Populations Inhabiting the Magadi Soda Lake in Kenya. Hydrobiologia, 2014, vol. 739, no. 1, pp. 55–71.