Legal and postal addresses of the publisher: office 1410a, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_est@narfu.ru
http://aer.narfu.ru/en/

ABOUT

The Assessment of Critical Conditions of Dispersed Magnesium Ignition in Water Vapor. P. 91–98

Версия для печати

Section: Physics. Mathematics. Informatics

UDC

536.46

Authors

V.V. Aksenov*, V.M. Yulkova*
*Northern (Arctic) Federal University named after M.V. Lomonosov
Corresponding author: Vasiliy Aksenov, address: Naberezhnaya Severnoy Dviny, 22, Arkhangelsk, 163002, Russian Federation; e-mail: vasvikaks@gmail.com

Abstract

The paper investigates experimentally and analytically the ignition process of dispersed magnesium in water vapor. In the experiment under controlled conditions of temperature and consumption of the oxidant (water vapor) the critical ignition temperatures of dispersed metal (fine magnesium cutting of 0.07 mm thick) existed. Its combustion limit was determined by a sharp increase of the ignition delay time near the critical temperature. Analytically the critical kindling temperatures of magnesium in water vapor were calculated on the basis of a mathematical model, according to which the dispersed magnesium was considered as an assembly of particles, uniformly distributed in the gas volume and represented a system with the volume source of heat. Their power level depended on the metal particles concentration and sizes. It was assumed that those particles were involved in the convective and radiative heat transfer with the environment in the presence of a chemical reaction of magnesium interaction with water vapor on their surface. Based on the known kinetics, determining the rate of the metal interaction with a gaseous oxidizer, the used mathematical model allowed us to make the quantitative calculations of critical kindling temperatures of the dispersed metal or macrokinetic constants by well-known experimental critical temperatures. The dispersed magnesium combustion in the water vapor is heterogenetic. If the intensity of the internal heat transfer between the dispersed magnesium and water vapor in the gasdispersed system is much less than the intensity of the system heat exchange with the environment, the equation defining the critical conditions of ignition of dispersed magnesium in water vapor enters the equation defining the critical ignition conditions of an individual sample in the oxidizer.

Keywords

ignition, induction time, dispersed magnesium, gaseous oxidizer
Download (pdf, 1.1MB )

References

  1. Rogachov A.S., Mukas’yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the Synthesis of Materials: an Introduction to Structural Macrokinetics]. Moscow, 2013. 400 p. 
  2. Baras F., Kondepudi D.K., Bernard F. Combustion Synthesis of MoSi2 and MoSi-Mo5Si3 Composites: Multilayer Modeling and Control of the Microstructure. J. Alloys Compounds, 2010, vol. 505, pp. 43–53. 
  3. Folomeev A.I., Kol’tsov S.I. O mekhanizme vzaimodeystviya magnievykh splavov s vodoy [On the Mechanism of the Interaction of Magnesium Alloys with Water]. Zhurnal prikladnoy khimii [Russian Journal of Applied Chemistry], 1989, vol. 62, no. 3, pp. 704–706. 
  4. Aksenov V.V., Yulkova V.M. Dinamika protsessa vosplameneniya chastitsy magniya v vodyanom pare [Dynamics of Magnesium Particle Ignition Process in Water Vapor]. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Estestvennye nauki, 2015, no. 4, pp. 111−118. 
  5. Brzhustovskiy T., Glassmen I. Parofaznye diffuzionnye plamena pri gorenii magniya i alyuminiya [Vapor Phase Diffusion Flames by Combustion of Magnesium and Aluminum]. Geterogennoe gorenie [Heterogeneous Combustion]. Moscow, 1967, pp. 91−163. 
  6. Gol’dshleger U.I., Shafirovich E.Ya. Rezhimy goreniya magniya v oksidakh ugleroda. 1. Gorenie v СO2 [Modes of Magnesium Combustion in Carbon Monoxide. 1. Combustion in CO2]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 1999, vol. 35, no. 6, pp. 42−49. 
  7. Gol’dshleger U.I., Shafirovich E.Ya. Rezhimy goreniya magniya v oksidakh ugleroda. 2. Gorenie v СO [Modes of Magnesium Combustion in Carbon Monoxide. 1. Combustion in CO]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2000, vol. 36, no. 2, pp. 67−73. 
  8. Gol’dshleger U.I., Amosov S.D. Rezhimy goreniya i mekhanizmy vysokotemperaturnogo okisleniya magniya v kislorode [Combustion Modes and Mechanisms of High-Temperature Oxidation of Magnesium in Oxygen]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2004, vol. 40, no. 3, pp. 28−39. 
  9. Gurevich M.A., Stepanov A.M. Vosplamenenie metallicheskoy chastitsy [Inflammation of the Metal Particle]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 1968, vol. 4, no. 3, pp. 334−342. 
  10. Derevyaga M.E., Stesik L.N., Fedorin E.A. Rezhimy goreniya magniya [Modes of Magnesium Combustion]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 1978, vol. 14, no. 5, pp. 3−10. 
  11. Fedorov A.V., Tropin D.A. Matematicheskaya model’ vosplameneniya magniya v rasshirennom diapazone parametrov [Mathematical Model of Magnesium Ignition in an Expanded Range of Options]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2008, vol. 44, no. 5, pp. 64−71. 
  12. Fedorov A.V., Shul’gin A.V. Modelirovanie goreniya chastitsy magniya [Modeling of Magnesium Particle Combustion]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2009, vol. 45, no. 6, pp. 20−25. 
  13. Shevtsov V.I. Model’ parofaznogo okisleniya chastits metallov [Model of Steam Oxidation of Metal Particles]. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 1996, vol. 32, no. 3, pp. 95−101. 
  14. Cassel H.M., Liebman I. Combustion of Magnesium Particles II Ignition Temperatures and Thermal Conductivities of Ambient Atmospheres. Combustion and Flame, 1963, vol. 7, no. l, pp. 79−81. 
  15. Yagodnikov D.A. Vosplamenenie i gorenie gazodispersnykh sistem na osnove metallicheskikh goryuchikh [Ignition and Combustion of Gas-Dispersed Systems Based on Metal Combustibles]. Zakony goreniya [The Laws of Combustion]. Ed. by Yu.V. Polezhaev. Moscow, 2006, pp. 160−183. 
  16. Kubashevskiy O., Gopkins B. Okislenie metallov i splavov [Oxidation of Metals and Alloys]. Moscow, 1965. 
  17. Ezhovskiy G.K., Mochalova A.S., Ozerov E.S., Yurinov A.A. Vosplamenenie i gorenie chastitsy magniya [Ignition and Combustion of Magnesium Particles]. Gorenie i vzryv: materialy IV Vsesoyuz. simp. po goreniyu i vzryvu [Combustion and Explosion: Proc. 4 All-Union Symp. on Combustion and Explosion]. Moscow, 1972, pp. 234−240. 
  18. Frank-Kamenetskiy D.A. Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoy kinetike [Principles of Macrokinetics. Diffusion and Heat Transfer in Chemical Kinetics]. Moscow, 2008. 
  19. Ozerov E.S. Osnovy teorii vosplameneniya gazodispersnykh system [Fundamentals of the Theory of Ignition of Gas-Dispersed Systems]. Leningrad, 1978. 
  20. Vargaftik N.B., Vinogradov Yu.K., Yargin V.S. Handbook of Physical Properties of Liquids and Gases. New York, 1996. 
  21. Bretshnayder S. Svoystva gazov i zhidkostey [Properties of Gases and Liquids]. Moscow; Leningrad, 1966. 
  22. Reynor G.V. Metallovedenie magniya i ego splavov [Metallurgical Science of Magnesium and Its Alloys]. Moscow, 1964. 
  23. Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of Heat Transfer Theory]. Novosibirsk, 1970.