Founder: Northern (Arctic) Federal University named after M.V. Lomonosov

Editorial office address: Russian Federation, 163002, Arkhangelsk, Naberezhnaya Severnoy Dviny 17, office 1410a

Phone: (818-2) 21-61-00(15-33)



Radiocarbon Dating of Groundwater of the Northern Dvina Depression. С. 5–16

Версия для печати

Section: Geosciences




Aleksandr I. Malov*, Mikhail V. Gontarev*, Khikmatulla A. Arslanov**, Fedor E. Maksimov**, Aleksey Yu. Petrov**
*Federal Center for Integrated Arctic Research, Russian Academy of Sciences (Arkhangelsk, Russian Federation)
**Saint Petersburg State University (Saint Petersburg, Russian Federation)


Tracers are the powerful tool to clarify the conceptual models of groundwater and the management strategy, including the conservation practices. They can provide substantial support for the identification and modeling of a pollutant flux as well as its transit time distribution and transfer into the aquifers. We studied groundwater samples in wells and springs of the sandy and carbonate deposits of the Northern Dvina depression at the junction zone of the Mezen syneclise and the Fennoscandian Shield. In assessing of old groundwater of the age of more than two thousand years and δ13С > –13 ‰ (δ13С is an indicator characterizing the ratio of carbon isotopes 13C and 12C in a sample compared to the standard) on a first approximation we can use a relatively simple Ingerson and Pearson model. The Mook model is most suitable when δ13С < –13 ‰. However, if the calculated value of the original radiocarbon activity in the collecting area exceeds 102.5 pmc we also use the Ingerson and Pearson model. The results of radiocarbon dating allowed us to identify the most vulnerable developing areas of fresh groundwater from the surface contamination in the quaternary deposits and coal formations, as well as the areas of the least mineralized groundwater in the Vendian Padun Formations. The radiocarbon age of these waters is defined as “modern”; for a more precise dating the short-lived isotopes should be used. Mineral waters are of the Late Pleistocene age; they can be contaminated from the surface only through the boreholes in case of technical defects in the construction and operation. Therefore, to determine the causes of long-term changes in the chemical and isotopic composition of these waters we should analyze the hydrodynamic and hydrochemical conditions in the aquifer system.


radiocarbon dating of groundwater, carbon isotope, mineral water, Northern Dvina depression
Download (pdf, 1.6MB )


  1. Malov A.I., Gontarev M.V., Zykov S.B., Porshnev A.I. Mnogoletnie izmeneniya aktivnostey izotopov urana v podzemnykh vodakh venda Mezenskoy sineklizy [Long-Term Changes in the Uranium Isotopes Activity in the Vendian Groundwater of the Mezen Syneclise]. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Estestvennye nauki, 2014, no. 2, pp. 23–31. 
  2. Malov A.I., Zykov S.B., Porshnev A.I., Gontarev M.V. Fundamental’nye osnovy ekologicheski bezopasnykh tekhnologiy osvoeniya prirodnykh resursov Zapadno-Arkticheskogo sektora Rossiyskoy Federatsii [Fundamental Principles of Environmentally Friendly Technologies of the Natural Resources Development in the Western Arctic Sector of the Russian Federation]. Georesursy. Geoenergetika. Geopolitika [Georesources. Geoenergetics. Geopolitics], 2014, no. 1(9), pp. 1–16. 
  3. Malov A.I. Estimation of Uranium Migration Parameters in Sandstone Aquifers. Journal of Environmental Radioactivity, 2016, vol. 153, pp. 61−67. 
  4. Arslanov Kh.A., Tertychnaya T.V., Chernov S.B. Problems and Methods of Dating Low-Activity Samples by Liquid Scintillation Counting. Radiocarbon, 1993, vol. 35, no. 3, pp. 393−398. 
  5. Münnich K.O. Messungen des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften, 1957, vol. 44, no. 2, pp. 32–34. 
  6. Stuiver M., Polach H.E. Reporting of 14C Data. Radiocarbon, 1977, vol. 19, no. 3, pp. 355–363. 
  7. Arslanov Kh.A. Radiouglerod: geokhimiya i geokhronologiya [Radiocarbon: Geochemistry and Geochronology]. Leningrad, 1987. 300 p. 
  8. Han L.F., Plummer L.N. A Review of Single-Sample-Based Models and Other Approaches for Radiocarbon Dating of Dissolved Inorganic Carbon in Groundwater. Earth-Science Reviews, 2016, vol. 152, pp. 119–142. 
  9. Ferronskiy V.I., Polyakov V.A. Izotopiya gidrosfery Zemli [Isotopy of the Earth’s Hydrosphere]. Moscow, 2009. 632 p. 
  10. Tamers M.A. Validity of Radiocarbon Dates in Groundwater. Geophysical Survey, 1975, vol. 2, pp. 217–239. 
  11. Ingerson E., Pearson F.J. Jr. Estimation of Age and Rate of Motion of Groundwater by the 14C Method. Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry. Ed. by Y. Miyake, T. Koyama. Tokyo, 1964, pp. 263−283. 
  12. Pearson F.J. Jr., Hanshaw B.B. Sources of Dissolved Carbonate Species in Groundwater and Their Effects on Carbon-14 Dating. Isotope Hydrology. Vienna, 1970, pp. 271–286. 
  13. Fontes J.Ch. Dating of Groundwater. Guidebook on Nuclear Techniques in Hydrology. Vienna, 1983, pp. 285–317. 
  14. Fontes J.Ch., Garnier J.M. Determination of the Initial 14C Activity of the Total Dissolved Carbon: a Review of the Existing Models and New Approach. Water Resources Research, 1979, vol. 15, pp. 399–413. 
  15. Mook W.G. On the Reconstruction of the Initial 14C Content of Groundwater from the Chemical and Isotopic Composition. Proc. 8th Int. Conf. on Radiocarbon Dating. New Zeeland, Wellington, 1972, vol. 1, pp. 342–352. 
  16. Mook W.G. The Dissolution-Exchange Model for Dating Groundwater with 14C. Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. Vienna, 1976, pp. 213–225. 
  17. Han L.F., Plummer L.N. Revision of Fontes & Garnier’s Model for the Initial 14C Content of Dissolved Inorganic Carbon Used in Groundwater Dating. Chem. Geol., 2013, vol. 351, pp. 105–114. 
  18. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., van der Plicht J. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years Cal BP. Radiocarbon, 2013, vol. 55, pp. 1869–1887.