Founder: Northern (Arctic) Federal University named after M.V. Lomonosov

Editorial office address: Russian Federation, 163002, Arkhangelsk, Naberezhnaya Severnoy Dviny 17, office 1410a

Phone: (818-2) 21-61-00(15-33)
e-mail: l.zhgileva@narfu.ru
http://aer.narfu.ru/en/

16+

ABOUT

Determination of Kinetic Characteristics of Thermal Decomposition of Fuels in Order to Analyze the Combustion Processes. P. 118–128

Версия для печати

Section: Chemistry

UDC

662.7

Authors

Mar’’yandyshev Pavel Andreevich
Institute of Energy and Transport, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: p.marjyandishev@narfu.ru
Chernov Aleksandr Aleksandrovich
Institute of Energy and Transport, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: chernov.ksandr@gmail.com
Lyubov Viktor Konstantinovich
Institute of Energy and Transport, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
е-mail: vk.lubov@mail.ru

Abstract

This paper presents a literature review on thermal methods of analysis of various fuels: different coals, different types of biofuel and biomass. The paper deals with thermogravimetric research, description of thermogravimetric curves, analysis of process of thermal decomposition of different fuels in inert and in oxidizing media. Various models are applied for kinetic parameters calculation, such as activation energy and a preexponential factor. The paper presents data on the kinetic parameters of thermal decomposition of fuels on the basis of different models, and an instrumentation overview for the experimental part of the thermal analysis, considers operating temperature range and characteristics of the various models, and a comparison of the values of the activation energy and the preexponential factor of different biofuels. The purpose of this article is to demonstrate the prospects of the complex thermal analysis, to determine the kinetic parameters on its basis and to use the certain data in numerical simulation of combustion processes, heat transfer, fluid dynamics. There is a lack of work on the thermogravimetric and kinetic studies of wood biofuels in the literature, which is a promising research area. Data on the kinetic characteristics are used in the numerical modeling of burning processes of the boiler units, namely at the process calculation of thermal decomposition and combustion of fuels. The software products, such as Ansys Fluent, CFX, Fire 3D, SigmaFlame, STAR, CCM +, OpenFoam, Flow Vision et al. in their algorithms use the differential kinetic model of fuel combustion, where the following kinetic constants of the activation energy and the preexponential factor are applicable.

Keywords

biofuels, thermal decomposition, thermogravimetric investigation, kinetic investigation, activation energy, preexponential factor, computational modelling
Download (pdf, 4.3MB )

References

  1. Lyubov V.K., Lyubova S.V. Povyshenie effektivnosti energeticheskogo ispol’zovaniya biotopliv [Improving the Efficiency of the Energy Use of Biofuels]. Arkhangelsk, 2010. 496 p.
  2. Boyko E.A., Didichin D.G., Ugay M.Yu., Shishmarev P.V., Evtikhov Zh.L. Sovershenstvovanie skhemy kompleksnogo termicheskogo analiza tverdykh organicheskikh topliv [Improving the Design of Complex Thermal Analysis of Solid Organic Fuels]. Problemy ekologii i razvitiya gorodov: sbornik nauchnykh trudov [Problems of Ecology and Urban Development: Proc.]. Krasnoyarsk, 2001, vol. 1, pp. 314–319.
  3. Uribe M.I., Salvador A.R., Guilias A.I. Kinetic Analysis for Liquid-Phase Reactions From Programmed Temperature Data. Sequential Discrimination of Potential Kinetic Models. Thermochim. Acta., 1995, vol. 94, no. 2, pp. 333–343.
  4. Shishmarev P.V. Sovershenstvovanie i vnedrenie kompleksnogo termicheskogo analiza v praktiku energeticheskogo ispol’zovaniya kansko-achinskikh ugley: dis. … kand. tekhn. nauk [Improvement and Implementation of Complex Thermal Analysis in the Practice of the Energy Use of Kansk-Achinsk Coals: Cand. Tehn. Sci. Diss.]. Krasnoyarsk, 2006. 208 p.
  5. Bodorev M.M. Sovershenstvovanie tekhnologii proizvodstva stolovykh vin na osnove ispol’zovaniya dubovoy shchepy: dis. … kand. tekhn. nauk [Improving the Technology of Table Wines Through the Use of Oak Chips: Cand. Tehn. Sci. Diss.]. Moscow, 2002. 258 p.
  6. Braga M.R., Melo M.A.D., Aquino M.F., Freitas J.C.O., Melo M.A.F., Barros J.M.F., Fontes M.S.B. Characterization and Somparative Study of Pyrolysis Kinetics of the Rice Husk and the Elephant Grass. J. Therm. Anal. Calorim., 2014, vol. 115, pp. 1915–1920. doi: 10.1007/s10973-013-3503.
  7. Li L., Wang G., Wang S., Qin S. Thermogravimetric and Kinetic Analysis of Energy Crop Jerusalem Artichoke Using Distributed Activation Energy Model. J. Therm. Anal. Calorim., 2013, vol. 114, pp. 1183–1189. doi: 10.1007/ s10973-013-3115-2.
  8. Zhao H., Yan H., Dong S., Zhang Y., Sun B., Zhang C., Ai Y., Chen B., Liu Q., Sui T., Qin S. Thermogravimetry Study of the Pyrolytic Characteristics and Kinetics of Macro-Algae Macrocystis Pyrifera Residue. J. Therm. Anal. Calorim., 2013, vol. 111, pp. 1685–1690.
  9. Mothé G.M., Carvelho C.H.M., Sérvulo E.F.C., Mothé C.G. Kinetic Study of Heavy Crude Oils by Thermal Analysis. J. Therm. Anal. Calorim., 2013, vol. 111, pp. 663–668.
  10. Oliveira L.E., Giordani D.S., Paiva E.M., de Castro H.F., Silva M. Kinetic and Thermodynamic Parameters of Volatilization of Biodiesel From Babassu, Palm Oil and Mineral Diesel by Thermogravimetric Analysis (TG). J. Therm. Anal. Calorim., 2013, vol. 111, pp. 155–160. doi: 10.1007/s10973-011-2163-8.
  11. Slopiecka K., Bartocci P., Fantozzi F. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. App. Energy, 2012, vol. 97, pp. 491–497.
  12. Villanueva M., Proupin J., Rodriguez-Anon J.A., Fraga-Grueiro L., Salgado J., Barros N. Energetic Characterization of Forest Biomass by Calorimetry and Thermal Analysis. J. Therm. Anal. Calorim., 2011, vol. 104, pp. 61–67.
  13. Nowak B., Karlstrom O., Backman P., Brink A., Zevenhoven M., Voglsam S., Winter F., Hupa M. Mass Transfer Limitation in Thermogravimetry of Biomass Gasification. J. Therm. Anal. Calorim., 2013, vol. 111, pp. 183–192.
  14. Williams A., Jones J.M., Ma L., Pourkashanian M. Pollutants From the Combustion of Solid Biomass Fuels. Prog. Energy Combustion Sci., 2012, vol. 38, pp. 113–137.
  15. Pokrobko S., Krol D. Thermogravimetric Research of Dry Decomposition. J. Therm. Anal. Calorim., 2012, vol. 111, pp. 1811–1815. doi: 10.1007/s10973-012-2398-z.
  16. Shen D.K., Gu S., Luo K.H., Bridgwater A.V., Fang M.X. Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. Fuel, 2009, vol. 88(6), pp. 1024–1030. doi: 10.1016/j.fuel.2008.10.034.
  17. Shen D.K., Gu S., Baosheng Jin, Fang M.X. Thermal Degradation Mechanisms of Wood Under Inert and Oxidative Environments Using DAEM Methods. Bioresource Techn., 2001, vol. 102, no. 2, pp. 2047–2052.
  18. Korobeinichev O.P., Paletsky A.A., Gonchikzhapov M.B., Shundrina I.K., Haixiang C., Naian L. Combustion Chemistry and Decomposition Kinetics of Forest Fuels. Procedia Eng., 2013, vol. 62, pp. 182–193.
  19. Van den Velden M., Baeyens J., Brems A., Janssens B., Dewil R. Fundamentals, Kinetics and Endothermicity of the Biomass Pyrolysis Reaction. Renew Energy, 2010, vol. 35, pp. 232–242.
  20. Muller-Hagedorn M., Bockhorn H., Krebs L., Muller U. A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species. J. Anal. Appl. Pyrolysis, 2003, vol. 68–69, pp. 231–249.
  21. Vecchio S., Luciano G., Franceschi E. Expolarative Kinetic Study on the Thermal Degradation of Five Wood Species for Applications in the Archeological Filed. Ann. Chim., 2006, vol. 96, pp. 715–725.
  22. Senneca O., Chirone R., Masi S., Salatino P. A Thermogravimetric Study of Nonfossil Solid Fuels. 1. Inert pyrolysis. Energy Fuel, 2002, vol. 16, pp. 653–660.
  23. Cai J., Liu R. Research on Water Evaporation in the Process of Biomass Pyrolysis. Energy Fuel, 2007, vol. 21, pp. 3695–3697.
  24. Yao F., Wu Q., Lei Y., Guo W., Xu Y. Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis. Polym. Degrad. Stabil., 2008, vol. 93, pp. 90–98.
  25. Li Z., Liu C., Che Z., Qian J., Zhao W., Zhu Q. Analysis of Coals and Biomass Pyrolysis Using the Distributed Activation Energy Model. Bioresource Techn., 2009, vol. 100, pp. 948–952.
  26. Authier O., Thunin E., Plion P., Schönnenbeck C., Leyssens G., Brilhac J.-F., Porcheron L. Kinetic Study of Pulverized Coal Devolatilization for Boiler CFD Modeling. Fuel, 2014, vol. 122, pp. 254–260.
  27. Dekterev A.A. Matematicheskoe modelirovanie vysokotemperaturnykh tekhnologicheskikh protsessov [Mathematical Modeling of High-Temperature Technological Processes]. Konferentsiya s mezhdunarodnym uchastiem “VIII Vserossiyskiy seminar vuzov po teplofizike i energetike”: tez. dokl. [Conference with Int. Part. “VIII All-Russ. Seminar of the Universities on Thermal Physics and Power-Engineering”: Theses]. Yekaterinburg, 2013.
  28. Collazo J., Porteiro J., Miguez J.L., Granada E., Gomez M.A. Numerical Simulation of a Small-Scale Biomass Boiler. Energy Conv. and Manag., 2012, vol. 64, pp. 87–96.
  29. Hajek J., Jurena T. Modelling of 1 MW Solid Biomass Combustor: Simplified Balance-Based Bed Model Coupled With Freeboard CFD Simulation. Chem. Eng. Transactions, 2012, vol. 29, pp. 745–750.
  30. Porteiro J., Collazo J., Patino D., Granada E., Gonzalez J.C.M., Miguez L. Numerical Modeling of a Biomass Pellet Domestic Boiler. Energy & Fuels, 2009, vol. 23, pp. 1067–1075.
  31. Chaney J., Liu H., Li J. An Overview of CFD Modelling of Small-Scale Fixed-Bed Biomass Pellet Boilers with Preliminary Results from a Simplified Approach. Energy Conv. and Manag., 2012, vol. 63, pp. 149–156.
  32. Papadikis K., Gu S., Bridgwater A.V., Gerhauser H. Application of CFD to Model Fast Pyrolysis of Biomass. Fuel Proc. Techn., 2009, vol. 90, pp. 504–512.
  33. Ion V., Popescu F., Rolea G. A Biomass Pyrolysis Model for CFD Application. J. Therm. Anal. Calorim., 2013, vol. 111, pp. 1811–1815.
  34. Al-Abbas A.H., Naser J., Dodds D. CFD Modelling of Air-Fixed and Oxy-Fuel Combustion of Lignite in a 100 KW Furnace. Fuel, 2011, vol. 90, pp. 1778–1795.
  35. Yang Y.B., Yamauchi H., Nasserzadeh V., Swithenbank J. Effects of Fuel Devolatilisation on the Combustion of Wood Chips and Incineration of Simulated Municipal Solid Wastes in a Packed Bed. Fuel, 2003, vol. 82, pp. 2205–2221.