Founder: Northern (Arctic) Federal University named after M.V. Lomonosov

Editorial office address: Russian Federation, 163002, Arkhangelsk, Naberezhnaya Severnoy Dviny 17, office 1410a

Phone: (818-2) 21-61-00(15-33)
e-mail: l.zhgileva@narfu.ru
http://aer.narfu.ru/en/

16+

ABOUT

Peculiarities of Calculation of Hydraulic Particle Size to Simulate the Initial Concentration of Suspended Substances in the Estuarine Areas of the Arctic Seas (the Case of the White Sea). P. 295–307

Версия для печати

Section: Geosciences

UDC

519.65+556.5.06:504.4(268.46)

Authors

Natal’ya A. Shilova*, Igor’ I. Studenov**
*Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russian Federation)
**Federal Center for Integrated Arctic Research named after academician N.P. Laverov, Russian Academy of Sciences (Arkhangelsk, Russian Federation)
Corresponding author: Natal’ya Shilova, address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail: n.shilova@narfu.ru

Abstract

Calculation of the initial concentration of suspended solids and simulation of turbidity cloud distribution in aquatic ecosystems is one of the urgent tasks. This relates to the need to assess the impact of different types of works planned in water bodies on the inhabitants of these ecosystems. The solution of this problem is complex and is discussed in various scientific schools. To conduct preliminary assessments, simple engineering methods are used, which are described in normative legal documents and methodological recommendations. One of the most complex methods for predicting the dynamics of suspended matter concentration is the construction of a three-dimensional mathematical model with the subsequent development of methods for its solving using high-performance computing. On the other hand, the state’s close attention to the industrial development of the Arctic territories stipulates a comprehensive refinement of methods (both engineering and mathematical) for assessing the impact of planned works on the environment in order to level global environmental risks. This article presents the results of studying the dynamics of density of sea water as a function of temperature data and salinity, and a methodology for calculating water density based on the International Equation of State of Seawater. We have obtained the calculated values of the hydraulic particle size for different values of water density and have investigated the dependence of the change in the initial concentration of suspended solids on the deposition rate of particles. The results of a numerical experiment show the impact of water density on the initial concentration of a cloud of suspended solids, formed from a point source when dredging works in the estuarine areas of the Arctic seas.

Keywords

simulation of suspended materials concentration, equation of suspended matter transport, hydraulic size, hydrochemical seawater parameter, equation of state of seawater, impact of dredging, the White Sea
Download (pdf, 2.9MB )

References

  1. Fedorova N. OVOS v primerakh i zadachakh [EIA in Examples and Problems]. RELGA, 2008, no. 8. Available at: http://www.relga.ru/Environ/WebObjects/tgu-www.woa/wa/Main?level1=main&level2=articles&a... (accessed 14.07.2017).
  2. Bray R.N. Environmental Aspects of Dredging. Leiden, Netherlands, Taylor & Francis, 2008. 394 p.
  3. Bradtke K. Simulation of Suspended Particulate Matter Transport in the Gulf of Gdansk during 1996. Oceanological Studies, 1997, vol. 26(4), pp. 123–132.
  4. Yurezanskaya Yu., Koterov V. Modelirovanie perenosa vzveshennykh veshchestv na okeanicheskom shel’fe. Teoriya i praktika modelirovaniya: monogr. [Simulation of Suspended Substance Transport on the Ocean Shelf. Theory and Practice of Simulation]. Germany, Lambert Academic Publishing, 2011. 107 p. (In Russ.)
  5. Naumov V.A. Matematicheskoe modelirovanie rasprostraneniya vzveshennykh primesey ot tochechnogo istochnika i ikh osazhdeniya v vodotoke [Mathematical Modeling of Distribution of Suspended Impurities from a Point Source and Its Deposition in the Watercourse]. Izvestiya KGTU [KSTU News], 2017, no. 44, pp. 46–58.
  6. 6. Bezrukov Yu.F. Okeanologiya. Ch. I. Fizicheskie yavleniya i protsessy v okeane [Oceanology. Part I. Physical Phenomena and Processes in the Ocean]. Simferopol, Tavrida National V.I. Vernadsky Univ. Publ., 2006. 159 p. (In Russ.)
  7. 7. Hakanson L. Suspended Particulate Matter in Lakes, Rivers, and Marine Systems. New Jersey, USA, the Blackburn Press, 2006. 331 p.
  8. 8. Alekseev K.A., Mukhametzyanova A.G., Klinov A.V. Osobennosti chislennogo modelirovaniya rasprostraneniya tekhnologicheskoy mutnosti v bol’shikh vodotokakh [Peculiarities of Numerical Simulation of Spread of Technological Turbidity in Large Streams]. Vestnik Kazanskogo Tekhnologicheskogo Universiteta [Herald of Kazan Technological University], 2013, vol. 16, no. 7, pp. 21–23.
  9. Velikanov N.L., Naumov V.A., Primak L.V. Osazhdenie chastits vzvesey v vode [Precipitation of Solid Particles of Slurry in Water]. Mekhanizatsiya stroitel’stva [Mechanization of Construction], 2013, no. 7(829), pp. 44–48.
  10. Drozdov E.V., Zhuravleva I.V. Raschet gidravlicheskoy krupnosti chastits zagryazneniy stochnykh vod [Calculation of Hydraulic Size of Particles of Sewage Pollution]. Nauchnyy Vestnik VGASU. Stroitel’stvo i Arkhitektura [Russian Journal of Building Construction and Architecture], 2009, no. 2(14), pp. 29–35.
  11. Winterwerp J.C. A Simple Model for Turbulence Induced Flocculation of Cohesive Sediment. J. of Hydraulic Research, 1998, vol. 36, no. 3, pp. 309–326.
  12. Studenov I.I., Shilova N.A. Raschet gidravlicheskoy krupnosti vzvesi pri modelirovanii dinamiki kontsentratsii vzveshennykh veshchestv v priust’evykh rayonakh arkticheskikh morey na primere Belogo morya [Calculation of Hydraulic Size of Suspended Substances to Simulate Dynamics of Concentration of Suspended Substances in the Estuarine Areas of the Arctic Seas by the Example of the White Sea]. Arktika: ekologiya i ekonomika [The Arctic: Ecology and Economy], 2015, no. 3(19), pp. 40–47.
  13. Vakhrushev I.A. Obshchee uravnenie dlya koeffitsienta lobovogo soprotivleniya chastits razlichnoy izometricheskoy formy pri otnositel’nom dvizhenii v bezgranichnoy srede [A General Equation for the Drag Coefficient of Particles of Different Isometric Shape with Relative Motion in an Infinite Medium]. Khimicheskaya promyshlennost’ [Industry & Chemistry], 1965, no. 8, pp. 54–57.
  14. Fizicheskie svoystva vody [Physical Properties of Water]. HighExpert.RU. Available at: http://www.highexpert. ru/content/liquids/water.html (accessed 06.10.2017).
  15. Tools and Basic Information for Design, Engineering and Construction of Technical Applications. Available at: http://www.engineeringtoolbox.com (accessed 06.10.2017).
  16. Luk’yanov S.A., Shvartsman Yu.G. Granulometricheskiy sostav donnykh otlozheniy ust’evykh zon malykh rek Onezhskogo zaliva Belogo morya [Grain-Size Composition of Bottom Sediments in the Estuarine Zones of the Minor Rivers of the White Sea Onega Bay]. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Estestvennye nauki, 2013, no. 2, pp. 28–34.
  17. Chugaynova V.A. Rezul’taty sezonnykh gidrologicheskikh i gidrokhimicheskikh nablyudeniy v Belom more (po dannym 2000–2004 godov) [The Results of Seasonal Hydrological and Hydrochemical Observations in the White Sea (According to the Data of 2000‒2004)]. Materialy otchetnoy sessii Severnogo filiala PINRO po itogam nauchnoissledovatel’skikh rabot 2003–2004 gg. [Proc. Report Session of the Northern Branch of the Knipovich Polar Research Institute of Marine Fisheries and Oceanography on the Research Works Results of 2003‒2004]. Arkhangelsk, 2007, pp. 5–18. Available at: http://dspace.vniro.ru/handle/123456789/1620 (accessed 15.05.2016).
  18. Millero F.J., Poisson A. International One-Atmosphere Equation of State of Seawater. Deep Sea Research. Part A. Oceanographic Research Papers, 1981, vol. 28, iss. 6, pp. 625–629.